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Abstract. Combining the extended Painlev6 conjecture with Yoshida’s singularity and 
stability analyses it is shown that, for two-dimensional homogeneous potentials of degree 
2m, integrability restricts Kowalevskaya exponents and integrability coefficients to discrete 
sets of values. This result is made use of in the analysis of integrability of symmetric 
potentials with m = 2, 3 and 4. Direct construction of additional first integrals is successful 
only in special cases which can be transformed to known integrable ones. 

1. Introduction 

In recent literature considerable attention has been paid to the question of integrability 
of Hamiltonian dynamical systems. A Hamiltonian system of N degrees of freedom 
is said to be integrable if there exist N analytic, single-valued time-independent first 
integrals in involution. Such systems possess several remarkable properties and are of 
great importance from practical as well as theoretical points of view. However, given 
a Hamiltonian system it is not possible to say whether it is integrable or not except 
when one can construct first integrals directly. Even though such constructions can be 
carried out to a certain extent, particularly for low-dimensional systems, the results 
are neither exhaustive nor conclusive (Hietarinta 1987). In recent times it has been 
realised that singularity analysis and stability analysis can shed considerable light on 
the question of integrability. The Painlev6 analysis (Ablowitz et a1 1980) and Kowalev- 
skaya analysis of Yoshida (1983) are two approaches to singularity analysis. Roekaerts 
and Schwarz (1987) have shown that these methods can be combined to obtain stronger 
conditions on integrability. Yoshida (1984, 1986) has also shown that the stability of 
certain types of solutions is directly linked with the existence of first integrals. A 
number of candidates for integrable systems have been identified by these methods 
and their combinations. 

In this paper we analyse systems with Hamiltonian of the form 

H = +( P: + P:) + V ( x ,  y )  (1) 

with V ( x ,  y )  a homogeneous polynomial potential of even degree 2m. Hamiltonians 
of these types are used in lattice dynamics, condensed matter physics, field theory, 
astrophysics, etc, and special cases of these have been studied in the existing literature 
(Bountis et a1 1982, Dorizzi et al 1983, Grammaticos et a1 1983, Steeb et a1 1985). By 
combining singularity and stability analyses we have obtained a stronger condition for 
integrability as a restriction on the possible Kowalevskaya exponents ( KE)  and integra- 
bility coefficients. We have also carried out singularity and stability analyses of 
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symmetric homogeneous potentials with m = 2, 3 and 4 to identify possible integrable 
cases. A second integral is also constructed directly in those cases suggested by these 
analyses. We have generalised the integrable cases to a potential of arbitrary degree 
2m by constructing the corresponding second integral. 

In 0 2, we present a brief summary of the singularity and stability analyses and 
their implications concerning integrability of a system. Here is also presented our 
results concerning the restrictions on KE obtained by combining singularity and stability 
analyses. The results of the analyses carried out for quartic, sextic and octic potentials 
are presented in 0 3. Second integrals for the identified integrable cases are also given 
here. Section 4 summarises our conclusions. 

2. Singularity, stability and integrability 

2.1. Painleve‘ analysis 

According to the extended PainlevC conjecture (Ramani et a1 1982) a sufficient condition 
for integrability is the weak Painlev6 property (WPP). A system of equations is said 
to have the strong PainlevC property (PP) when the only movable singularities of the 
solutions in the complex time plane are poles. In the weak PainlevC case certain 
algebraic branch points are also allowed. A strong necessary condition for the PP or 
WPP is provided by the PainlevC analysis (P-analysis) (Ablowitz et a1 1980, Graham et 
a1 1985). 

In P-analysis we try to find solutions around a movable singularity at to in the 
complex time plane in the form 

where T = t - to and p and q are positive rational numbers with a common integer 
denominator s > 0. s # 1 corresponds to WPP. There are three steps in the P-analysis. 

Step 1.  Find the dominant behaviour. When 

x( t )  = a o T - p  and y (  t )  = bOT-‘ (3) 

are inserted in the equations of motion, for certain values of p and q some terms of 
the equations may balance while others can be ignored for t + t o .  These terms are 
called dominant terms. 

Step 2. Find the resonances. To find the resonances r, substitute 

x = aoT-p + C T - ~ + ‘  

y = bOT-q + dT-q+‘ 
(4) 

in the linearised form of the dominant terms. Resonances are those values of r for 
which the determinant of the linear system satisfied by T( c, d )  vanishes. For the system 
to have PP, j = rs must be integers. 
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Step 3. Find the constants of integration. It is tested whether the positive resonances 
do indeed correspond to free parameters in a solution to the full equations of motion 
without logarithmic singularities. This is done by using expansion of solutions ( 2 )  up 
to the largest value of the resonance. 

If the system passes all the three steps we say that it is a p-case. 

2.2. Kowalevskaya exponents 

Hamiltonians with homogeneous potentials of degree 2 m  are invariant under the 
similarity transformation 

( 5 )  
t - ,  a-’t x-, a g x  Y + agY 

P, -+ a f P ,  Py +J d ’ P y  

where g = 1 / (  m - 1) and g ’ =  m / ( m  - 1 ) .  If under the above transformation a function 
(polynomial) gets multiplied by a M  it is said to be of weighted degree M. Using the 
constants k ,  and k,  as determined from the equations, 

we define a 4 x 4  matrix 

where 

-a2H/ax2  -a’H/ayax) S =  ( g ‘  0) 
(-a’H/axaY -a2H/dyZ 0 g’  * 

Then 

is called the Kowalevskaya determinant. It can be seen that for a homogeneous 
potential of degree 2 m  

K ( P )  = ( P  + 1 ) ( P  - g,)[p’  - P ( 2 g  + 1 + 2 ( g  + 1 )’ + D m  I ( 9 a )  
where 

D, = V2 V (  k ,  , K J  

and gH = 2 m / ( m  - 1) is the weighted degree of the Hamiltonian. Roots of the equation 
K ( p )  = 0 are called Kowalevskaya exponents. In Hamiltonian systems KE come in 
pairs ( p ,  g ,  - 1 - p ) .  The pair (-1, gH) is always present. 

By Yoshida’s theorems (Yoshida 1983) if there exists at least one irrational or 
imaginary Kowalevskaya exponent the system is not algebraically integrable. If there 
exists a second invariant Z of weighted degree g ,  satisfying the condition that its 
gradient does not vanish at x = k ,  , y = k 2 ,  P, = -gkl  and Py = -gk ,  then a K E  p = g, 
is associated with this k ,  and k , .  It can be seen that KE are the same as resonances 
of the P-analysis when p = q = g. 
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2.3. Stability an a lys is 

Using Ziglin’s theorem (Ziglin 1982, 1983) Yoshida proved that the existence of an 
exponentially unstable straight-line periodic solution signals the non-integrability of 
a system (Yoshida 1986). The integrability coefficient is given by 

A, =V2V(c1, c2) -(2m - 1) (10) 
where V’V is Laplacian of V and c, and c2 are solutions of 

(11) 

Exponential instability occurs when 

A, < O ;  1 < A ,  < 2m - 1; 2 m i 2  < A, <6m -2 ; .  . . ; j ( j  - 1 ) m  

+ j  < A, < j ( j +  1)m - j ;  . . . . (12) 
So the Hamiltonian system is non-integrable in the corresponding regions. 

2.4. Restrictions on K E  

The relationship between the resonance of a PainlevC singularity and the KE have been 
clarified by Roekaerts and Schwarz (1987). They have shown that restrictions imposed 
on the resonances by the extended PainlevC conjecture imply that (i)  all KE associated 
with solutions k , ,  k , ,  both non-zero ( p  = q = g) ,  must be integral multiples of 1/( m - l) ,  
and (ii) all KE associated with solutions k ,  and k, with k, = 0, k, # 0 ( k ,  # 0, k,  = 0 )  
forp < q = g ( q  < p  = g)mustbeintegralmultiplesof1/2swheres = l / n ( m  - 1)andnis  
a fixed integer specific to a particular Hamiltonian. In case (i) p = r and in case (ii) 
p = l / ( m  - 1) - ( r -  1)/2. 

We now combine singularity analysis with stability analysis to obtain further 
restrictions on KE. For homogeneous potentials it follows from (9a) and the results 
of Roekaerts and Schwarz (1987) that the solutions of the equation 

must be integral multiples of l / ( m  - 1) in case (i). Hence, for integrability, D, must 
be given by 

-D, = [ k ( k - m  - 1)+2m2]/(m- 1 ) ,  (14) 

where k is an integer. Comparing equations (6) and (1 1) and making use of equations 
( 9 b )  and (10) we find that A m  is directly related to D, by 

A, = -D,/gg‘- ( 2 m  - 1). (15) 

A, = k ( k - m - l ) / m + l .  (16) 

Consequently A, is also restricted to a set of discrete values 

Expressing k modulo m by 

k = n m + i  

where n is an integer and i = 0, 1, 2 , .  , . , m - 1, we have 

A, = j ( j -  1)m + j  f o r n = j ,  i = l  ( k = j m + 1 )  (18) 
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and 

A, = j ( j  + 1)m - j 

j ( j -  l ) m + j <  A, < j ( j +  1)m - j  

for n = j +  1, i = O  ( k =  ( j -1)m).  (19) 

(20) 

For jm  + 1 < k < ( j  + 1) m 

and hence is in the unstable region. It follows that for integrability k can assume only 
the values j m  or j m  + 1 for arbitrary j .  In other words apart from -1 and g, the only 
values that the KE in case (i)  can assume are 0, 1 (mod m) in units of 1/( m - 1). The 
integrability coefficient A, then assumes only the values corresponding to boundaries 
separating stable and unstable regions. 

In case (ii) the solution of (13) must be a multiple of 1/2s. Hence for integrability 

-D,  = [ k / 2 n ( k / 2 n - m - 1 ) + 2 m 2 ] / ( m - 1 ) 2  (21) 

A, = ( k / 2 n ) ( k / 2 n - m - l ) / m + l .  (22) 

where k is an integer. Correspondingly the integrability coefficient is 

If k = 2nj, equation (22) is formally the same as (16) with k +j .  By repetition of the 
previous reasoning it will then follow that integrable cases correspond to j = O ,  1 
(mod m) .  However, there can also exist other integrable cases with k # 2nj depending 
on the values of n and m. 

3. Integrable potentials 

We have performed the PainlevC analysis and calculated KE for symmetric quartic, 
sextic and octic potentials with a view to identifying possible integrable cases in the 
light of the above results. Direct construction of the second integral of motion is also 
given in some cases. A generalisation of the integrable cases to potentials of arbitrary 
degree 2m is also obtained. 

3.1. Quartic potentials 

Consider a system with Hamiltonian 

H = f( P: + P;,) + A ( x 4  + y4) + B (  x 3 y  + xy3)  + C x 2 y 2  

and equations of motion 

A, B, C # 0 

x = P, 

P, = - [ 4 AX + B ( 3 x ' y  + y ) + 2 C X ~  * ] 
P, = - [ 4 A y 3  + B ( x 3  + 3 x y 2 )  + 2 C x 2 y ] .  

y = P, 

To perform the PainlevC analysis we look for dominant behaviour near a singularity 
of the form ( 3 ) .  Substituting ( 3 )  in ( 2 2 )  give p = q = 1 with bo = aao, where CY can 
assume one of the four possible values 

a,,2 = i l  a1,4 = { ( 4 A  - 2 ~ )  * [ ( 4 A  - 2 C )  - 4 B ] " 2 } / 2 B .  (25) 
Correspondingly 

a i  = - 2 / ( 4 A  + 3 B a  + 2 C a 2  + B a 3 )  
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Solutions of (24)  can be expanded in the form 
m m 

x ( t )  = C ajT-’+j y (  t )  = bjT-’+’ 
j = O  j = O  

This is a strong p-case. Resonances are found to be -1,  1 ,  2, 4 ( a  = * l )  and sufficient 
arbitrary constants enter with the above type of solutions, when C = 6 A ,  A and B 
arbitrary. 

To calculate K E  and integrability coefficients we note that for the system (23) ,  g = 1 ,  
g‘ = 2 and m = 2. A solution of ( 6 )  is k2 = ak,  (correspondingly c2 = ac,  in ( 1  1)) and 

k: = -gg’c: = ai .  (28)  
By the restrictions mentioned in 9 2 the K E  (in case (i) with k , ,  k2 both non-zero) can 
only be 1 ,  2, 3 , .  . . , i.e. D2 can have values -6, -8, -12, -18 ,  . . . and corresponding 
values of A 2  are 0, 1 ,  3, 6 , .  . . for any choice of solutions. For the p-case, C = 6 A  ( A  
and B arbitrary) KE are - 1 ,  1 ,  2, 4 for a = * 1  ( D 2 =  -6) and - 1 ,  -1,  4,  4,  for a = q4 
(D2  -- -12) and the corresponding values of A 2  are 0 and 3 respectively. 

Of the possible integrable cases corresponding to the allowed values of D2,  for the 
p-case, we have been able to construct the following second integral of motion directly 
from the Poisson bracket condition [H, I ]  = 0,  assuming the weighted degree s 4 :  

I = PxPy + B(x4+ y4+ 6x2y2)  + 4 A ( x 3 y  + xy3) .  (29 )  
The special case of the Hamiltonian (23 )  with B = 0 has been discussed by Steeb 

et a1 (1985). 

3.2. Sextic potentials 

Consider the Hamiltonian 

H = f( Pf;  + P i )  + A ( x 6 + y 6 )  + B ( x 5 y  + x y 5 )  + C ( x 4 y 2 +  x 2 y 4 )  + Dx3y3  

A, B, C, D # 0. 

1 = P, 

(30)  
Equations of motion are 

j = Py 
P, = -[6Ax5+ B ( 5 x 4 y + y 5 ) +  C ( 4 x 3 y 2 + 2 x y 4 ) + 3 0 x 2 y 3 ]  

Py = - [6Ay5+B(x5+5xy4)+ C ( 2 x 4 y + 4 x 2 y 3 ) + 3 0 x 3 y 2 ] .  
(31)  

For this system, we have a singularity with dominant behaviour ( 3 )  with p = q = f and 
bo = aa,, , where a is a root of the equation 

B ( a 6 -  l ) + ( 2 C  - 6 A ) a ( a 4 -  ~ ) + ( ~ D - S B ) C Y ~ ( C Y ~ -  1 ) = 0  

a:= -3 / [4 (6A+ 5Ba + Ba5+2Ca4+4Ca2+ 3 D a 3 ) ] .  

(32 )  

(33)  

where a = * 1  is a root of the equation. Correspondingly 

Solutions of (29 )  will be of the form 

This is a weak p-case. The resonances are found to be - 1 ,  f, 3, 3 (with a = rt l )  and 
a sufficient number of arbitrary constants enter in the solution when C=15A and 
10B = 3 0  with A and B arbitrary. 
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For the system (30) g = i, g’=  $ and m = 3. k, = ak, is a choice of solution of (6) 
(correspondingly c2 = ac, in (11)) and k: = -gg’c: = a:. In order that the system be 
integrable D3 has to be -y, -9, -?, -?, . . . and corresponding values of h3 are 0, 1, 
5, 8 , .  . . for any choice. For C = 15A and 10B = 3 0  (A and B arbitrary) K E  are -1, 
,, 2, 3 ( a  = * l )  and h3 = 0. 

Looking for an integral of motion with weighted degree C3 we find in the p-case 

(35) 

Special cases of the Hamiltonian of the form (30) with B = D = O  have been 

1 3  

I = PxPy+ B[x6+y6+ 15(x4y2+x2y4)]+A[6(x5y+xy’)+20x3y3]. 

discussed by Graham et a1 (1985). 

3.3. Octic potentials 

For the Hamiltonian 

H =t(Pt+ P;)+A(x8+y8)+ B(x7y+xy7)+ C ( x 6 y 2 + x 2 y 6 ) + D ( x 5 y 3 + x 3 y 5 ) +  Ex4y4 
(36) 

it is found that C = 28A, E = 70A and D = 78, A and B arbitrary, is a p-case. For 
this system g = i ,  g ’ = $  and m =4.  D4 can take values -?, -8, -?, -7,. . . and 
corresponding values of h4 are 0, 1, 7, 12, 22,. . . for any choice of solutions. For the 
p-case we have a solution for which KE are -1, i, $ and and h 4 = 0  yielding an 
integrable case. We can also identify the following non-integrable cases: (i) B = D = 0 
(except when (a) C=28A,  E =70A, (b) C = 4 A ,  E =6A and (c) C = E  = O ) ;  (ii) 
A = B = C = D = O ;  (iii) A = C = D = E = O ,  and (iv) A = B = C = E = O .  

Searching for an integral of motion with weighted degree 6: we have, when 

(a) C=28A,  E =70A and D = 7 B  

I = P x P Y + A [ 8 ( x 7 y + x y 7 ) + 5 6 ( x 5 y 3 + x 3 y 5 ) ]  

+ B [ x 8 + y s + 2 8 ( x 6 y 2 + x 2 y 6 ) + 7 0 x 4 y 4 ]  (37) 

(b) C = 4 A , E = 6 A a n d  B = D = O  

I = Pa - Pyx 

I = Pz,+2x8 or I = P$+2y8. (39) 

(38) 

(c) B = C = D = E = 0 

3.4. Generalisation 

We can generalise the integrable cases to arbitrary m ( m  3 2). The general form of an 
integrable symmetric Hamiltonian with homogeneous potential of degree 2m is 

H = ;(P: + P;) +AV, + BJ, 

I=PxPy+BVm+AJm (41 1 

(40) 

and its integral of motion with a weighted degree 2m/(m - 1) is 
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and 

m - l  
2m-2j-1 2 j+l  

Jm = C Pjx Y 
j = O  

( 43 )  

Integrable cases (29 ) ,  (35 )  and (37 )  are special cases of (41 )  for m = 2 ,  3 and 4 
respectively. 

4. Conclusion 

In this paper an attempt was made to combine singularity and stability analyses for a 
Hamiltonian system with a homogeneous potential. A new restriction on KE, which 
may be used as an effective tool in the search for integrable systems, has been obtained. 
Applying this to symmetric quartic, sextic and octic potentials we have identified 
possible candidates for integrability. However, it happens that the cases where we 
have been able to construct a second integral of motion directly are not genuinely new 
integrable systems. This is because potentials of the integrable form (40) can be 
reduced, by a rotation through an angle .n/4 and scaling (Hietarinta 1987), to known 
integrable potentials of the form 

V = x ' + ay  ". (44 )  

It is known that the general form of integrable symmetric potnetials are V = f ( x 2 + y 2 )  
with integrals of motion I = Pxy - Pyx and V = f ( x )  + f (  y )  with integrals of motion 
I = P' ,+2 f (x )  or P : + 2 f ( y )  (Hietarinta 1987). Integrals of motion (38 )  and (39 )  are 
also special cases of these. The question whether these exhaust the integrable cases 
or whether there can exist an additional integral in the rest of the cases is presently 
under investigation. 
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